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A new version of constructing the three-dimensional theory of elastic stability is 
advanced. Bifurcation is considered to be an interchange of material particles at 

a fixed point in space. As a kinematic variable we take the rate of change of 
Lagrangean particle coordinates. On the basis of obtained exact solutions, an ap - 
proximate method is developed, valid in the case of small precritical deformations 
and rotations. 

Whenever the usual Lagrangean presentation is used for the motion of a conti- 

nuous medium [l, 21, the equations which determine the changes in the stress ten- 

sor necessarily contain the rotations of material particles. As a result, the linear- 
ized deformation equations of equilibrium in the general case contain the sought 
critical stresses p]. It is of interest to study that versionofa boundary value stability 
problem for which the parameters enter essentially only into the boundary conditions. 

One of these versions was suggested by Leibenzon [3], and then independently by 
Ishlinskii [4]. However, it cannot be obtained using the Lagrangean presentation 
while linearizing the original equations of the nonlinear theory of elasticity. 

In the present paper, nonlinear equations of the theory of elasticity in Eulerian 
representation are obtained using as a kinematic variable the rates of change in 

Lagrangean coordinates. On the basis of these equations, bifurcation of equilibri- 
um of an isotropic elastic body is considered. The advantage of the suggested ver- 
sion is that the changes in the Cauchy stress tensor are related only to the defor- 
mation tensor of introduced velocities. Therefore, the differential equations of 
equilibrium contain only those parameters of the prebifurcation state which are 

related to the change in physical properties of the body during deformation. The 
components of the rotation tensor of these velocities enter only into the boundary 
conditions in connection with the change of shape of the body at the instant of 
bifurcation. The parameters which enter as factors of the components of the rota- 

tion tensor in the boundary conditions are the most essential part of parametersof 

the precritical state which enter into the structure of the obtained boundary value 
problem for neutral equilibrium. 

For an isotropic elastic body which is only slightly deformed in the precritical 
state, the indicated circumstance permits to suggest a simple approximate version 
of the equations of neutral equilibrium in which the sought parameter of the cri- 
tical loading enters only into the boundary conditions. If the physical content of 
the sought functions which enter the differential equations and the boundary con- 
ditions is moved into the background, then it appears that the approximate version 
of the boundary value problem is close to the one used by Leibenzon. 
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1. We consider the slow motion of a deformable body in the case when the inertia 
forces can be disregarded. We use Cartesian coordinates with respect to the motionless 
space. The Lagrangean coordinates of the particles are defined by the coordinates (a,, 

oa, as) of their positions in the space in the initial unstressed state of the body. In a 

current state, at an arbitrary instant, a fixed particle is to be found at the point of coor- 

dinates pi = Xi (a,, aa, u,, t), i = 1,2,3. Then the equations ai = ai (zr, x2, 
sa,t)determine that particle which at the given instant is at the point (xi, x2, ss). For 

this point we introduce the quantity vi* = - ddi / at, which will be called the rate 
of change of the lagrangean coordinates. Its connection with the velocity ui of the 
material particle is established with the aid of the identity 

-=- (1.1) 
m 

Consequently, at any instanr, 

In the sequel we will assume that Vi* = Vi* (a,, az, as, t). The above introduced 
rate of change of the ~grang~n coordinates allows us to investigate processes at a fixed 

point in space. 
We consider the rate of change of the density p of the medium at a current state, con- 

.nected with the medium density p” at the initial state by the relation p / p” = det 

11 da, / ax, 11. D*ff 1 erentiating this expression with respect to time for Lci = eon&, 

we obtain 
a P _- 

( J at po 
= & & (2) = __ /jis !.t$ = _ Ai, ‘f! $C = _ [yJ yi* (1.3) 

‘s “1 
Here Ai, is the cofactor of the element &is/ i)~,~ in the mltrir i da, / ax, \\* If the 
medium density at the initial state is p” = consi,, then the following form of the con- 

tinuity equation holds : 
3L+p_!&0 (1.4) 

? 

As a measure of the deformation in the Euler representation of the motion, it is con- 
venient to use the second Cauchy measure [6] Cij = (aa, / 8Xi) (da,,, / dXj)y connec- 
ted with the Almansi strain tensor Eij by the relation cij= 6ij- 2eij, or the second 

Finger measure fij = (dxT/Ra,,l) f&i / 8U,,jl. The tensors Crj and fij are inverses 
of each other. We obtain the rate of change of these tensors at a fixed point of the space, 

First we compute 
%i _ 6% * aa 
-3r--3&%Lff 

av * aa aa mnm= 
aan axi axi 

- z&&$2 
1 

au av,” &I * 8a aa 
-2 

axi axi =-egg- 
aa, aa, au * -- -- 
axi axj (+-gg= 
* 1 

, elnn = -7 L at&-a**j i m n 

Differentiating the relation CinJmj = a,j, we get 

(1.5) 

(1.6) 
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The tensor e”,,, , introduced here, will be called the deformation tensor of the rate of 

change of the Iagrangean coordinates. We introduce also the rotation tensor of the velo- 

cities ni* 1 

( 

au * au * 
(11:,1*=T n_m 

aam aan > 

2. At an arbitrary instant, in the absence of body forces, we have, in the Eulerian 

representation, the following equilibrium equations inside the body and the boundary 
conditions at that part of the surface where the exterior forces are given: 

daij I dxi = 0, nioij = Fj 

Correspondingly, in the Lagrangean representation 

(2.1) 

an,j _ F.dS ax. 

hi _- 0, ,V{‘$j = -;l”s;- aij = p z 3t,j 
P” aa, 

(2.2) 

Here oij is the Cauchy stress tensor, rtij is the Piola stress tensor ,these tensors are 

related through the equation given between the parentheses [6]), Fj is the vector ofthe 
surface load corresponding to the area of the boundary surface in the current state, dS 
and dS” are the elements of area on the boundary surfaces in the current and initial 

states, respectively, while ?Q and ni” are the vectors of the unit normal to the boundary 
surface in the current and initial states, respectively, and [S] 

aa 
ni=nmo+f !tdSO 

x 
2 P dS 

(2.3) 

For a fixed point of the space the equilibrium equations expressed in the rates of change 
of the stress tensor [7] 

a $j 
-L 

( > axi dt =o (2.4) 

The boundary conditions have to be related to a fixed material particle. Therefore, at 
an arbitrary instant we must have 

dni dF. 
dt 6ij + Izi ‘2 = $ 

Computing the derivative dni / dt by differentiating (2.3) for CLj = const, we obtain 

the stress boundary conditions in terms of the rate of change of the stress tensor 

aGij aa.. 
ni ~fVm$ (2.5) 

In 
- 2 5mj f Qij 2) dS = -& (Fjds) 

m m 

The geometric boundary conditions are determined by the assignment of the velocities 

Vie 

3. It will be necessary to obtain the Cauchy and Piola stress tensors in terms of the 
Finger strain measure f,,,,,. In the case of a homogeneous, isotropic, perfectly elastic 
body, the specific potential energy @, referred to the initial volume, is a function of 
three independent invariants of the first Cauchy measure [S]. The same invariants can 

be expressed also in terms of the components f,, of the second Finger strain measure. 
This allows us to assume that @ = @ (f,,). Then, the necessary relations can be ob- 
tained starting from the expression fl] 
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aQ, 

Since c%t = @ (f,,), we have 

% = a (azi I a+) (3.1) 

(3.2) 

Applying the formula given in parentheses of (2.2), we find the representation of the 
Cauchy stress tensor 

(3.3) 

It is significant that the Cauchy stress tensor depends only on the tensor components 
fmn. A detailed discussion of the problem of the representation of the Cauchy stress ten- 

sor in terms of the strain measures c,, and fnlra can be found in [8]. 

Making use of the relations (3.3), (1.3). (l-6), (3.2), we obtain the expression for the 
rate of change of the Cauchy stress tensor at a fixed point in space 

(3.4) 

The tensor Bmjst determines the physical characteristics 
process. At the initial instant, for the undistorted body, the 

isotropic tensor (31, and p are the Lam& elastic constants) 

(3.5) 

of the body in the deformation 
tensor Bmjst is equal to the 

I) mjst = ~~~j~~~ + P ( 6ms6jt + GmtSjs) (3.6) 

A characteristic singularity of Eqs. (3.4) is the fact that only the components e.si* 
of the deformation tensor of the rate of change of the Lagrangean coordinates occur in 

them while the components o,~* of the rotation tensor do not occur. 

4. On the basis of Eqs. (2,4), (2.5),(3,4) we derive a complete system of differential 
equations and boundary conditions relative to the vector vi*, 

Substituting (3.4) into (2.5) we make use of the Piola identity 

a P a”i - -- z 

i3Xi ( > P” aa, 0 (4.1) 

which is given in a somewhat different form in [l]. Taking into account this identity, 

the differential equations of the equilibrium acquire the following form : 

-$-- PLjstest* + 2eGdhj - xmje,,*) = 0 (4.2) 
m 

In order to convert the boundary conditions to the velocities ui* we make use of the 

identity 

ni (4.3) 

which can be verified in a straightforward manner. Taking into account this identity and 
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the expressions (3.4), (2.3), the stress boundary conditions (2.5) obtain the form 

So Bmjstest* f z Sl,j + us* %) dS" = -$- (F$S') 
m s 

At that part of the surface where the velocities vi of the material particles are given, 

the rate of change ui* of the Lagrangean coordinates must be determined with the aid 

of the formulas (1.2). 
The equations (4.2) can be transformed also into the form 

a& ( av * an . 
Bmjstest* + y$- X,j + Us* * 

m m s > 
= 0 (4.5) 

Equations (4.2) and (4.4) are the desired equations of the nonlinear elasticity theory 
in terms of the rates of change of the Lagrangean coordinates. In this case, the velocities 

Vi* occur linearly in them. The nonlinearity is determined by the expression (3.5) for 
the tensor Bmjst and by the components rt,r of the Piola stress tensor. 

For the solution of concrete problems we can use, for example, the method of succes- 
sive loads. Knowing the rate of change of the Lagrangean coordinates, we can determine 

the displacement increments of the material particles, compute the tensor .B,,,jsl from 
(3. 5) find the stresses JI,~ and then determine again the rates for the next loading stage. 

In the process of successive loads it may turn out that for some magnitude of the load 

the homogeneous boundary value problem for the velocities Vi* will have a nontrivial 
solution. This corresponds to the appearance of the characterisitc motion, i.e. to the 
equilibrium bifurcation. 

5. In the case of potential (“dead”) surface loads, the right-hand side of Eqs. (4.4) 
becomes equal to zero and the system of equations (4.2) and (4.4) obtains the form 

& (Bmjstest* _I- 2e~JT,j - rimless*) = 0 
m 

12,’ ( av * 
&jstest* 

an 
+ + n,j + u,* +) = 0 

m s / 

(5.1) 

(5.2) 

In order to obtain the homogeneous boundary value problem of neutral equilibrium, 
the bifurcation process will be considered as the appearance of the characteristic motion 

of the medium. Thevelocitiesofthis motion will be denoted also by Ui*. On the part 
of the boundary surface where the velocities of the material particles are given, the ve- 

locity of the characteristic motion has to be considered equal to zero. The parameters 

Bnrjst and nS/ for the prebifurcation state have to be determined, strictly speaking, 
from the solutions of the initial nonlinear equations. If these parameters are known, then 
the condition for the existence of a nontrivial solution of Eqs. (5.1) and (5.2) determines 
the critical state of the deformable body. 

Equations (5.1) and (5.2) can be obtained as the Euler equation and the natural bound- 
ary conditions of some variational problem. We proceed with the known functional [9] 

(5.3) 

The condition for its stationary state leads to the equations of neutral equilibrium in the 
Lagrangean representation 
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Substituting into (5.3) the relation which follows from (1.2) 

Making use now of (3.1) and (3.2), we arrive at the expression 

(5.4) 

(5. 5) 

The functional (5.5) is mixed, the velocities v, * and uj, connected by the relation 

(1.2) occur simultaneously in it. From the condition for the stationary state of the func- 
tional (5.5), we can obtain at once two versions of the boundary value problem for the 
neutral equilibrium : one in the form of Eqs. (5.4) and the other one in the form of 

Eqs. (4.5) and (5.2). In the case of the homogeneous initial deformed state, when 
a%~, / (&r+jaj) = 0, the functional (5. 5) is transformed to the form 

I = S(G.- au,* avj* 
tlm,eLLei i* i- ti j r ,I--- m anm dto > 

T* 

(5.6) 

Only the velocities vi* occur in the functional (5.6). 

6. The strict equations of neutral equilibrium (5. l), (5.2). obtained in terms of the 
rates of change of the Lagrangean coordinates, contain the components of the rotation 
tensor only in the boundary conditions. This opens the possibility of constructing appro- 

ximate equations, in which the parameters of the precritical state of stress will not occur 

in the differential equations of the boundary value problem. 
It is interesting to observe that such equations for homogeneous initial stresses, with- 

out any additional simplifying assumptions, are obtained by making use of the equation 
of state [6] (Ed] is the Almansi strain tensor) 

Oij = hE,,6ij + 2p&ij c-s, = %IL) (6.1) 

Indeed, making use of (1.5) from (6. l), we obtain 

(6.2) 

where f,,no I (i&z, / az,) (au,, / az,) is Finger’s first measure. 
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In order to simplify the writing in the equations which will follow, let us agree that 

no summation is to be performed with respect to two identical indices, one of which is 
in parentheses. Then, if the initial state of stress is homogeneous and the directions of 

the principal axes of the stress tensor coincide with the directions of the Cartesian co- 
ordinate axes Xj, then we can write Xj = hcj)aj- Here kj are the principal elongations. 

Switching in (6.2) to the variables Xj and VI*’ = vj* f l(j), which corresponds to the 

use of the concomitant system of coordinates, we obtain 

aa.. 
u = ?&,,*‘8ij + 2jMij*‘, at eij *’ - _ + (6.3) 

The relations (6.3) have the form of the usual Hooke’s law in the linear theory of elas- 
ticity and do not contain explicitly the parameters of the precritical state of stress. In 
this case, Eqs. (2.4) obtain the form of the Lame’ equations in the linear theory of elas- 
ticity 

(htp)&J!$)+p~-O (6.4) 
s s 

The corresponding homogeneous boundary conditions are given by (2.5). (1.2). They 
have the form 

ni Less 
( 

*‘dij + 2peij *’ a?+* av *f 
- W6(j) ds. + Gq ax m O(i)8ij 

3 m > 
= 0 (6.5) 

where IJ~ are the principal stresses. The equations (6.4), (6. 5) form the boundary value 
problem of bifurcation in which the parameters of the precritical state of stress (the prin- 

cipal elongations and the principal stresses) occur only in the boundary conditions. 
Let us clarify now under what simplifying assumptions we can obtain, for the boundary 

value stability problem, the same Lame equations in the case of an ideal elastic body. 
For the sake of definiteness we take the specific potential energy in the form [ 11 

where Eij ’ is the Green strain tensor, connected with the first Cauchy measure Cij" = 

(ax, / &xi) (ax, / ~Uj) by the relation eijo = (cijo - S,j) / 2. Making use ofthe 
equality of the invariants of the tensors ci j” and fi j, from (3.3) we obtain the equation 
of state 

qj = +[Chll - P) fij + Pfim:rnjl 

where we take into account that 

11 = (f,, &I, - 3) I2 (6.8) 

Applying (1.3), (1.6) and the expression 311 / dt = c,toets* which follows from (6.8). 

we obtain 
asii 

at= (6.9) 

This equation can be written in the form (3.4). where now 
8X. 

Bmjst = [hcst06mn + P (ck6n1 + cF?Lt6ns)1 J$ 

We introduce the energy stress tensor CJij” aq/daij” [6] which,?or the considered form 

(6.6) of the potential energy, is 
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5ij” = .Z&k,6i; -+ 2r&ij0 

Then (6.9) can be written in the form 

(6.10) 

2e,“,,, 51, -. -’ J?lld,, * -I- 2?L (cstOesl *d r),ll .- &%Jl 

We consider now the case when the critical stresses at the loss of stability are consider- 
ably smaller than the elasticity modnli and the critical strains are much smaller than 

unity. Such an assumption holds, for example, for metal building structures. Then the 
first two terms which occur in brackets in (6. lo), with the factors h, IL, are substantially 

greater than the remaining terms which determine the deformation anisotropy of the 

elastic body. In this case, in the expression (6.10) it is admissible to neglect those terms 

which are the products of the comporrents of the initial stresses and strains by the com- 
ponents of the strain tensor est*, which is equivalent to the disregard of the deformation 

anisotropy of the elastic body. In this case the expression (6.10) becomes 

The equilibrium equations (2.5), taking into account the identity (4.1). obtain the form 

iq a [(hes,*6,, + ape&) -f$\ = 0 
n 

(6.1’2) 

If, furthermore, the initial rotations are also small, then &-rj / da, =r: c?,,~ and instead 

of (6.12) the following equations are satisfied : 

a+ (he,,*G,,, + 2pe&J == 0 (6.13) 
m 

The corresponding boundary conditions follow from (2.3), (2.5), (4.3) 

Here we have made use also of the equality a~,* i da, = ems* - a,,*. 

The Piola tensor of precritical stresses in (6.14) has to be considered equal to the stress 
tensor defined with the aid of the linear elasticity theory, because the initial strains and 
rotations are assumed to be small. With the same degree of accuracy which has been 
used for the passage from (6.10) to (6.11) one can neglect the terms ernS*nsn in the 

equations (6.14). Then the boundary conditions become 

( 
an 

nmo he,,*Ll -t 2pezl, + w& xt,,, -I- 77,?* * 
s i 

= (1 (6.15) 

Equations (6.13) can be written in the form of the lame equations 

(6.16) 

Thus, for the approximate solution of the stability problems of weakly deformable elas- 
tic bodies, we can make use of the boundary value problem (6.15). (6.16), with a para- 
meter in the boundary conditions. For its derivation we have made assumptions on the 
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possibility of disregarding the precritical strains and rotations, which corresponds to such 
a formulation of the stability problem where in the precritical state the elastic body is 
considered to be under tension without being deformed. 

The boundary value problem described by Eqs. (6.14), (6.15) is similar to the corres- 
ponding boundary value problem in Leibenzon’s method [3]. If we digress from the in- 

terpretation of the unknown functions which occur in the equations, then these problems 

differ only in some ~im~rtant terms in the boundary conditions. Previously, one of the 
authors of the present paper has determined the rightfulness of the application of Leib- 
enzon’s method to the approximation solution of the stability problems of weakly defor- 

mable isotropic elastic bodies ( * ). 

The equations (6.15). (6.16) are not the natural boundary conditions and the Euler 

equations of some functional similar to (5.6). However, in the opinion of the authors, 
for the determination of the first smallest eigenvalue of the boundary value problem, 
this circumstance is immaterial. At the same time, the application of the obtained 

approximate equations can significantly facilitate the solution of concrete problems, 

especially in those cases when simple solutions of the homogeneous Lami equations are 
known. 
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